

PII: S0040-4039(97)00762-4

1,3-ASYMMETRIC INDUCTION IN RETRO-[1,4]-BROOK REARRANGEMENTS OF PROPARGYLLITHIUM COMPOUNDS TO PROPARGYLSILANES

Frank Sammtleben[§]), Mathias Noltemeyer[#]), and Reinhard Brückner^{*}[§])

§) Institut für Organische Chemie der Georg-August-Universität, Tammannstr. 2, D-37077 Göttingen, Germany
#) Institut für Anorganische Chemie der Georg-August-Universität, Tammannstr. 4, D-37077 Göttingen, Germany

Abstract: The γ -siloxylated propargyl phenyl sulfides **3a-d**, **5**, and **6** were lithiated with lithium naphthalenide at -78°C in THF. They gave propargyllithium intermediates which rearranged within 10-30 min to the propargylsilanes **4a-d**, **7**, and **8**, respectively. In these compounds the relative orientations of γ -C-O vs. newly formed C-Si bonds were determined by a crystal structure analysis of the dinitrobenzoate *syn*-**10**, inferred from NMR shift homologies or found by a Karplus analysis of pertinent J_{vik} values. The *anti:syn* selectivities of these retro-[1,4]-Brook rearrangements are probably kinetically controlled. They range from 81:19 *anti:syn* starting from sulfide **3a** to 87:13 *syn:anti* starting from sulfide **3d**. © 1997 Elsevier Science Ltd.

Retro-[1,4]-Brook rearrangements are silvl group shifts across the $O^1-C^2-C^3-C^4$ moiety of 4-lithio-2-siloxy substituted carbon-chains ¹. Retro-[1,4]-Brook rearrangements of siloxylated allyllithium compounds 1 can exhibit a high level of stereocontrol due to 1,3-asymmetric induction (Scheme 1) ². They react to allylsilanes 2 in which the inducing C^2-O^1 bond and the newly formed C^4 -Si bond are preferentially oriented *anti*. The tBuPh₂Si-group migration in the allyllithium *trans*-1b exhibited the highest *anti*-selectivity of 97:3 and [1,4]shifts of the tBuPh₂Si group had a higher *anti*-preference than those of the MePh₂Si group. The *anti*-selectivity of these retro-[1,4]-Brook rearrangements is probably in the same way kinetically controlled as the *anti*-selectivity of the retro-[1,4]-Brook rearrangements of analogous crotyllithium ³ and tiglyllithium compounds ⁴.

Schemes 2 and 3 show the first retro-[1,4]-Brook rearrangements of siloxylated propargyllithium compounds and which steric course they take under the influence of a 1,3-asymmetric induction. The starting propargyl phenyl sulfides **3a-d**, **5**, and **6** (53:47 - 63:37 mixtures of configurationally unassigned epimers)⁵ were primed for these rearrangements at -78°C in THF through reductive lithiations with lithium naphthalenide⁶ (the first ones, to the best of our knowledge, applied to *propargyl* phenyl sulfides). After 10-30 min we isolated the propargylsilanes **4a-d**, **7**, and **8** by flash chromatography⁷ in 56-79% yield as an unseparable mixture of *anti* and *syn* isomers (**4a**) or as separated *anti* and *syn* isomers (**4b-d**, **7**, **8**).

The stereostructures of these rearrangement products were determined in three ways. Firstly, the major epimer obtained from the retro-Brook rearrangement of the sulfide **3d** was semi-hydrogenated over Raney nickel to the *cis*-configurated ($J_{olefinic} = 14.0 \text{ Hz}$) alkenyl silane *syn*-9 (Scheme 4). This compound was esterified to the 3,5-dinitrobenzoate *syn*-10 from which a crystal structure analysis was made ⁸ (Fig. 1). It proved that the lithium derivative of sulfide **3d** had rearranged mainly to the propargylsilane *syn*-4d.

Scheme 4. a) H₂ (1.2 bar), Raney-Ni (30 weight-%), MeOH, ultrasound, 6 h; 94%.– b) 3,5-Dinitrobenzoyl chloride (6 equiv.), 4-(dimethylamino)pyridine, pyridine, reflux, 90 min; 80% (m.p. 179°C; recrystallized from MeOH/toluene).

Secondly, we collected the chemical shifts (as far as unequivocally assigned) of all protons and ¹³C nuclei located between or by the stereocenters of the rearrangement products (Table 1). Since the X-ray structure of Fig. 1 allowed to identify the rearrangement products *anti-* and *syn-4d* we could compare the chemical shifts of the mentioned nuclei in diastereomer *anti-4d* vs. diastereomer *syn-4d*. In *anti-4d* one observes highfield shifts for δ_{1-H} and δ_{3-H} and lowfield shifts for $\delta_{2-H(A)}$, $\delta_{2-H(B)}$, δ_{C-1} , δ_{C-2} , δ_{C-3} , and δ_{C-4} . The assumption that the same shift orderings distinguish the *anti,syn* pairs of the other rearrangement products **4a-c**, **7**, and **8**, too, is the basis for their *anti,syn* assignments. That these assignments adhere to all eight shift orderings – as far as identifiable in the respective compounds – *without a single exception* is considered strong circumstancial evidence for their correctness. These assignments signified also that all *anti* diastereomers of the rearrangement products **4b-d**, **7**, and **8** had eluted faster than their *syn* counterparts from the flash chromatography column (only exception: *anti-* and *syn-4a* co-eluted).

Our third access to stereostructures concerned the propargylsilanes 4d, 7, and 8 as well as the allylsilanes *syn-9* and *syn-10* derived from the first of these compounds. They all contain a SiPhR¹R² as well as a tBu group. Their bulkiness must ensure ⁹ that the respective molecule occurs exclusively as conformer with zigzag-shaped C_{terr} -C-C-C-Si backbone – as shown in the headline of Table 2 and for the dinitrobenzoate *syn-10* in the solid state struc-

ture 11 of Fig. 1, too. As a consequence, the proton 2-H(A) of each *anti*-diastereomer of Table 2 has dihedral angles of $\approx 180^{\circ}$ to its vicinal protons. Therefore, it entertains two large couplings with them. Proton 2-H(B) of the same *anti*-configurated compounds, however, has dihedral angles of only $\approx 60^{\circ}$ to the vicinal protons. Accordingly, both corresponding couplings are small. On the other hand, in all *syn*-configurated compounds of Table 2 each proton attached to C-2 is related to one vicinal proton by a dihedral angle of $\approx 180^{\circ}$ and to another by a dihedral angle of $\approx 60^{\circ}$; each of them displays, therefore, one large and one small vicinal coupling.

anti, syn-4a-d, -7, -8

Com- pound	R ¹	R ²	R ³	R ⁴	δ _{1-H}	δ _{2-H(A)}	$\delta_{2\text{-}H(B)}$	δ _{3-Η}	δ _{C-1}	$\delta_{C^{\text{-}2}}$	δ_{C-3}	δ_{C-4}
anti- 4a	Me	Ph	Ph	Ph	ca. 4.10	1.65	1.81	2.67	70.42	38.31	17.65	108.68
syn- 4a	"	"	"	"	ca. 4.13	a)	_{a)}	2.97	66.47	38.15	15.27	108.40
anti- 4b	nBu	Ph	Ph	Ph	3.84	1.71	1.78	2.68	74.63	b)	b)	109.21
syn- 4b	"	"	"	"	3.91	1.59	1.72	2.98	70.54	b)	b)	108.74
anti- 4c	iPr	Ph	Ph	Ph	3.60	ca. 1.68	1.78	2.65	79.61	34.15	b)	109.38
syn- 4c	"	"	"	"	3.67	ca. 1.61	1.70	2.97	75.15	c)	b)	108.87
anti- 4d	tBu	Ph	Ph	Ph	3.37	1.56	1.92	2.63	83.80	32.28	18.92	109.60
syn- 4d	"	"	"	"	3.62	1.53	1.69	2.99	77.57	31.46	15.69	108.87
anti-7	tBu	Me	Me	Ph	3.29	1.36	1.67	1.95	82.98	31.51	20.22	109.76
syn-7	"	"	"	"	3.53	1.30	1.50	2.23	77.68	30.80	17.61	109.11
anti- 8	tBu	Me	Ph	Ph	3.34	1.43	1.76	2.33	83.22	31.89	19.25	109.55
syn- 8	"	"	"	"	3.57	1.38	1.57	2.63	77.61	31.13	16.44	108.89

^{a)} Value not determinable in the solely available spectrum of the *anti*,syn-4a mixture.- ^{b)} δ value of this carbon atom not unequivocally distinguishable from neighbouring resonances of R¹.- ^{c)} δ = 33.61 or 33.87 (the other resonance belongs to R¹).

The 1,3-asymmetric induction established in the retro-[1,4]-Brook rearrangements of the lithium derivatives of the propargyl sulfides **3a-d**, **5**, and **6** is not uniform. According to Scheme 2 increasing the size of the substituent R at the inducing stereocenter from methyl over n-butyl and isopropyl to *tert*-butyl makes the migration of a SiPh₃ group change gradually from an 81:19 *anti*-preference to a totally opposite 87:13 *syn*-preference. According to Scheme 3, the *syn* preference of SiPh_nMe_{3-n} group migrations in the *tert*-butylated substrates increases slightly from 74:26 to 87:13 for n = 1, 2, and 3.

Table 2. Vicinal coupling constants (in Hz) of 2-H₂ in the tBu-containing propargylsilanes and derived allylsilanes

^{a)} Couplings of H^{2(lowfield)} listed under $J_{2-H(A)}$ and couplings of H^{2(highfield)} under $J_{2-H(B)}$.

Too little is presently known about the detailed mechanism of retro-[Brook] rearrangements ¹ and the structure, stereostructure, and stereodynamics of propargyllithium (vs. allenyllithium) compounds ¹⁰ to endeavor to explane these results. We gained just one more piece of information by re-subjecting the minor product – propargylsilane *anti*-8 – and separately the major product – propargylsilane *syn*-8 – of the retro-[1,4]-Brook rearrangement of the propargyllithium derivative of sulfide 6 to their formation conditions whereupon they were recovered unchanged in 96% and 89% yield, respectively. These experiments demonstrate that the stereochemical outcome of the retro-[1,4]-Brook rearrangement leading to compound 8 is kinetically controlled. By analogy, the same should be true for the other rearrangements of this study.

ACKNOWLEDGMENT: Generous donations of *tert*-butyldiphenylsilyl chloride by *Wacker AG* are gratefully acknowledged.

REFERENCES AND NOTES

- 1. Brook, A. G. Acc. Chem. Res. 1974, 7, 77-78.- Brook, A. G.; Bassindale, A. R. in Rearrangements in Ground and Excited States (P. de Mayo, Ed.); Academic Press: New York, 1980; pp. 149-221.
- 2. Winter, E.; Brückner, R. Synlett 1994, 1049-1053.
- 3. Behrens, K.; Kneisel, B. O.; Noltemeyer, M.; Brückner, R. Liebigs Ann. 1995, 385-400.
- 4. Gibson, C.; Buck, T.; Noltemeyer, M.; Brückner, R. Tetrahedron Lett. 1997, 38, in the press.
- 5. All new compounds gave satisfactory ¹H-NMR and IR spectra and a correct combustion analysis.
- 6. Method: Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152-161.- Yus, M. Chem. Soc. Rev. 1996, 155-161.
- 7. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- 8. Crystal data: $C_{37}H_{42}N_2O_6Si_2$, M = 666.91, monoclinic, space group $P2_1/c$, a = 1782.6(4), b = 1018.1(2), c = 2121.1(7) pm, $\alpha = 90^\circ$, $\beta = 107.80(2)^\circ$, $\gamma = 90^\circ$, V = 3.665(2) nm³, Z = 4, $D_c = 1.209$ Mg/m³, F(000) = 1416, crystal dimensions $0.60 \times 0.60 \times 0.60$ mm.— Tables of atom positions, thermal parameters, and a complete listing of bond distances and angles have been deposited at the Cambridge Crystallographic Data Centre.
- 9. Hoffmann, R. W. Angew. Chem. 1992, 104, 1147-1157; Angew. Chem. Int. Ed. Engl. 1992, 31, 1124.
- Suzuki, M.: Morita, Y.; Noyori, R. J. Org. Chem. 1990, 55, 441-449. Dem'yanov, P. I.; Styrkov, I. M.; Krut'ko, D. P.; Vener, M. V.; Petrosyan, V. S. J. Organomet. Chem. 1992, 438, 265-288. Reich, H. J.; Mason, J. D.; Holladay, J. J. Chem. Soc. Chem. Commun. 1993, 1481-1483. Lambert, C.; Schleyer, P. v. R.; Angew. Chem. 1994, 106, 1187-1199; Angew. Chem. Int. Ed. Engl. 1994, 29, 1129-1140.

(Received in Germany 17 March 1997; accepted 21 April 1997)